
Power in Unity: Forming Teams in Large-Scale
Community Systems ∗

Aris Anagnostopoulos1

aris@dis.uniroma1.it
Luca Becchetti1

becchett@dis.uniroma1.it
Carlos Castillo2

chato@yahoo-inc.com

Aristides Gionis2

gionis@yahoo-inc.com
Stefano Leonardi1

leon@dis.uniroma1.it
1Sapienza University of 2Yahoo! Research

Rome, Italy Barcelona, Spain

ABSTRACT
The internet has enabled the collaboration of groups at a
scale that was unseen before. A key problem for large col-
laboration groups is to be able to allocate tasks effectively.
An effective task assignment method should consider both
how fit teams are for each job as well as how fair the assign-
ment is to team members, in terms that no one should be
overloaded or unfairly singled out. The assignment has to
be done automatically or semi-automatically given that it is
difficult and time-consuming to keep track of the skills and
the workload of each person. Obviously the method to do
this assignment must also be computationally efficient.

In this paper we present a general framework for task-
assignment problems. We provide a formal treatment on
how to represent teams and tasks. We propose alternative
functions for measuring the fitness of a team performing a
task and we discuss desirable properties of those functions.
Then we focus on one class of task-assignment problems,
we characterize the complexity of the problem, and we pro-
vide algorithms with provable approximation guarantees, as
well as lower bounds. We also present experimental results
that show that our methods are useful in practice in several
application scenarios.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling ; K.4.3 [Computers and Society]: Organi-
zational Impacts—Computer-supported collaborative work

∗The research leading to these results has received funding
from the EU FP7 Project N. 255403 – SNAPS, and from
the PRIN 2008 research projects COGENT (COmputational
and GamE-theoretic aspects of uncoordinated NeTworks)
and the Mad Web (Models, Algorithms and Data structures
for the Web and other behavioral networks) funded by the
Italian Ministry of University and Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

General Terms
Algorithms, Measurement

Keywords
Team formation, Task assignment, Scheduling

1. INTRODUCTION
While massive collaboration experiments existed before

the Internet, in recent years there has been an explosion in
the number and the scale of such systems. We have seen
the creation of large groups that use electronic communica-
tions to coordinate, including large non-governmental bodies
and large-scale collaborations such as GNU/Linux and the
Wikipedia. On the enterprise, networks of peers with hor-
izontal collaboration links are becoming increasingly com-
mon. In many cases, there is no central authority micro-
managing the work of the community.

People interact online in many ways: they share informa-
tion, cooperate, take collective decisions [21], and more. In
this paper we aim at providing algorithmic tools for helping
people collaborate efficiently. Specifically, we study how to
assign tasks in a large groups of peers.

Example. A company has to deal with a continuous stream
of ideas about new products or services. Evaluating a pro-
posal requires combining the expertise of several people to
create an evaluation team. Each proposal should be prop-
erly evaluated, but we must avoid spending too much effort
on each one, so evaluation teams should be small. It is also
desirable to spread the reviewing effort as evenly as pos-
sible, to avoid burdening someone with too many different
proposals to evaluate.

This is not an easy problem, not even for a company of
medium size. First, if there were no considerations of fair-
ness and all the reviewers had the same cost, then those who
are knowledgeable about many technical areas should have
to work more than others, as they can provide on their own
better coverage of the areas of each proposal. Second, if we
want to avoid overloading these reviewers, we have to con-
sider that in some cases we will need more than one person
to replace each one of them, in order to cover many of their
skills. Intuitively, there is a trade-off between individual
work-load and team size.

Contributions. In this paper we study algorithms that,
given an incoming stream of tasks, allocate them to teams

of people fit for the task, in a way that is fair: no-one is
overloaded or unfairly singled out. Specifically:

• we define a general framework to study task assign-
ment problems under several variants;

• we propose various functions for measuring the fitness
of a team performing a task and we discuss desirable
properties of those functions;

• we focus on a broad class of task-assignment problems,
provide a formal problem definition and characterize
their complexity as NP-hard;

• we present a full treatment of an important and real-
istic scenario with binary profiles in an online setting,
providing and analyzing approximate algorithms; and

• we test the performance of these algorithms on three
different datasets.

The proposed framework has similarities with the prob-
lem of scheduling jobs to machines, as well as with peer-
reviewing systems, such as the ones used for allocating pa-
pers to reviewers during the review phase of a conference.
However, there are key differences. First, team formation
entails set-cover, which differentiates our setting from the
one studied in scheduling problems. Also, we do not make
use of a bidding system and do not model our problem as a
matching problem. We elaborate on those differences in the
related-work section (Section 6).

Roadmap: Section 2 defines a general framework. Sec-
tion 3 provides a problem definition and characterizes the
complexity of a class of these problems. Section 4 studies in
detail approximate methods for the binary case in an online
setting, which are tested experimentally in Section 5. Sec-
tion 6 summarizes prior works related to ours and Section 7
presents our conclusions.

2. FRAMEWORK
The general problem is to assign tasks Jj from a set J to

teams Qj , which are subsets of people P, so that teams are
fit for their tasks and the assignment is fair to people. In
this section we describe in detail the general framework.

2.1 Tasks, Skills, People, and Teams
Tasks. We have a set of tasks (or jobs) J = {Jj ; j =
1, 2, . . . , k}, which arrive offline or online and need to be
assigned to a team of experts. In the offline setting all the
tasks are available immediately, while in the online setting
the jth task arrives at the jth time step and is assigned to
a team of experts before the arrival of the (j + 1)th task.

Skills. Each task requires a set of particular skills to be
completed. We define the notion of skill space S, which is
the space that contains the possible ways that skills combine
to form a task, so, each task is a point in the skill space: Jj ∈
S. We consider two settings: binary and continuous. In
the binary setting we have m different skills and each job
requires a subset of these skills, thus we have S = {0, 1}m.
In the continuous setting, we have again m different skills
but in this case a job might need each skill up to some extent,
so we define S = [0, 1]m. We use Jj

i to denote the extent of
the ith skill required by the jth task, so we have (in both
settings) Jj = (Jj

1,J
j
2, . . . ,J

j
m).

People. There is a set of people (or experts) P = {pj ; j =
1, 2, . . . , n}. People possess a set of skills and their profile is
represented by a point in the skill space: pj ∈ S. Similarly
with the tasks, we use pj

i to denote the extent to which the

Table 1: Notation
S Set of skills
J Set of tasks
P Set of people
m Number of skills
k Number of tasks
n Number of people
Jj jth task

Jj
i ith skill of jth task

pj jth person

pj
i ith skill of jth person

Qj Team assigned to jth task
qj Profile of team j

qj
i ith skill of profile of team j

s(q,J) Performance of team q on task J
L(p) Load of person p

jth person possesses the ith skill. Thus, in both the binary
and the continuous settings we have pj = (pj

1,p
j
2, . . . ,p

j
m).

We assume that the vector of skills that describe each
expert is a priori known. In many cases one has to learn the
skills of the experts from data. In this paper we consider
the skill-learning phase to be an independent problem, for
which either one of the methods listed in Section 6 can be
applied, or new methods can be developed.

Teams. To complete a task we need to assign it to a team
of experts. We let Qj ⊆ P be the team assigned to the
jth task. We assume that the skills of each team can be
represented by a point in the skill space, so for each team
Qj we compute its team profile qj ∈ S. We use qj

i to denote
the extent of the ith skill possessed by the jth group, so we
have qj = (qj

1,q
j
2, . . . ,q

j
m). We refer to a team by using the

notation qj and Qj interchangeably. Later, in Section 2.3,
we describe various ways to compute the team profile.

Scoring function. Given a team Q with profile q and
a task J we measure the performance of the team for the
task using a scoring function s(q,J). We assume in general
that s(·, ·) ∈ [0, 1], with 0 indicating complete failure and
1 complete success, but we may consider special cases of
interest. For example, writing s(·, ·) ∈ {0, 1}, corresponds
to tasks that either fail or succeed. In the next section we
consider various options for scoring, but for now it could
intuitively be seen as (i) a measure of the match between
the skills of the team and the requirements of the job, or
as (ii) the probability of success in executing the job at a
satisfactory level.

Load. Finally, an important quantity is the load L(p) of a
person p, which is the number of tasks in which she partic-
ipates: L(p) =

∣∣{j;p ∈ Qj}∣∣.
There are two important issues to address at this point:

(i) how is the group profile obtained from the individual pro-
files; and (ii) how the scoring function for a task depends
on the task profile and that of the team assigned to it. Be-
fore we enter into specifics we note that the setting is fairly
general and can capture many different situations, which in
turn may require qualitatively different modeling choices.

For instance, consider creating a team for a surgery that
requires at least a surgeon, an anesthetist and a nurse. In
this case, the surgery can not proceed if the team does not
include one person having each of these profiles. On the
other hand, consider assembling a team of experts to review
a proposal for a new service in a company, as in the example

of our introduction. In this case, the review can still be
effective, even if the reviewing team does not cover each and
every one of the relevant technical areas.

2.2 Properties
We begin by describing some natural properties that we

might want a task assignment system to possess, and later
we discuss about them.

Property 1 [Nondecreasing performance]. If Qj ⊆ Qi,
then for every task J we have s(qj ,J) ≤ s(qi,J). This states
that a team should perform equally or better than a subset
of its members.

Property 2 [Pareto-dominant profiles]. If qj ≥ qi

component-wise, then for each task J, we have s(qj ,J) ≥
s(qi,J). In words, a team that is more competent in all
skills than another team has better performance at any task.

Property 3 [Job monotonicity]. If Jj ≤ Ji component-
wise, then for every team Q with profile q we have s(q,Jj) ≥
s(q,Ji). This property states that the same team has a
higher performance on a simpler job.

Property 4 [Nonincreasing marginal utility]. Consider
two teams Qj and Qi such that Qj ⊆ Qi. For a person
p �∈ Qi let q̂j = F (Qj ∪ {p}) and q̂i = F (Qi ∪ {p}). (The
function F gives the profile of the team as a function of its
members; it is defined and discussed in Section 2.3.) Then,
s(q̂j ,J)− s(qj ,J) ≥ s(q̂i,J)− s(qi,J).

For each of the four properties stated, one can find situ-
ations where they would not hold. Properties 1 and 2 are
nevertheless quite natural, and are required in every setting
that we consider in the rest of this paper. Properties 3 and 4
are somewhat more restricting.

Property 1 (nondecreasing performance) assumes that new
members do not introduce conflicts or large coordination
costs – in spite for instance of Fred Brooks’ observation in
The Mythical Man-Month [8] that “adding manpower to a
late software project makes it later.”

Property 2 (Pareto-dominant profiles) ignores how skills
are distributed among the members of a team, although to
some extent this can be taken into consideration in the cre-
ation of the team profile from the profiles of its members.

Property 3 (job monotonicity), while quite natural for
many settings, does not allow for the following situation:
Consider a team possessing some set of skills X trying to
complete a task requiring a disjoint set of skills Y . Then
it should naturally fail. However, if assigned to a more de-
manding task that requires skills X ∪ Y then it might have
some partial success. This is related to whether all skills are
required to complete a task and illustrates how application-
specific details can change significantly the nature of the
setting and of the problems.

Property 4 (nonincreasing marginal utility) states that the
scoring function satisfies a submodularity property, if seen
as a function of the team members. This may be the case
whenever team members can, to some extent, replace each
other: each additional member adds to the team but the
marginal increase of every new person might be smaller as
the size of the team increases. Marginal utility does not
decrease in settings where each skill is unique to a set of
people (e.g., in the surgery example described above), or
in settings in which a certain minimum number of people
having a skill is required for a task to succeed (e.g., when
assembling sports teams). A key advantage of settings where

Property 4 is satisfied is that various assignment problems
can become more tractable by the application of submodular
function optimization techniques.

2.3 Team Profiles
As we mentioned previously, we assume that the per-

formance of a team Q can be modeled by a team profile
q ∈ S. In particular, the profile of a team consisting of
|Q| people with profiles Q = {p1,p2, . . . ,p|Q|} is the profile

q = F ({p1,p2, . . . ,p|Q|}) for a suitable function F .
Some possible choices for the function F include the fol-

lowing:

Maximum skill. Here the expertise of the team for each
skill equals to the expertise of the best team member, for
that skill:

F (Q) = (max
j

pj
i ,max

j
pj
2, . . . ,max

j
pj
m) = (max

j
pj
i)i=1,...,m,

where the maxima are taken over the |Q| team members.
This might be appropriate in settings where possessing one
expert for each skill is of paramount importance.

Additive skills. The expertise of the team is the sum of
the skills of each individual. This is appropriate in the case
where individuals can complement each other in particular
skills, for example, when forming a team of software devel-
opers for an application having several modules.

F (Q) = (min{
|Q|∑
j=1

pj
i , 1})i=1,...,m

Multiplicative skills. Here we set

F (Q) = (1−
|Q|∏
j=1

(1− pj
i))i=1,...,m.

One interpretation for this choice is that possessing a skill
is akin to having a certain probability of success, and team
members do independent attempts to apply their skills. This
might be appropriate in the case of assembling a team of
safety inspectors: each one has a certain chance of detecting
an issue related to her particular skills, and adding more in-
spectors decreases the chance of a problem going unnoticed.

Binary profiles for tasks and people. Of particular
interest is the special case of binary profiles, where S =
{0, 1}m, so pj

i ∈ {0, 1} and Jj
i ∈ {0, 1}. Binary profiles

arise in many cases of practical interest, in which we are
interested in a coarse-grained classification of people’s skills
(e.g., possessing a license or certification to perform a cer-
tain process). The binary-profile model is also interesting
because in this case all the choices for skill combination pre-
sented above are equivalent and they can be described in
terms of the binary OR operation:

F (Q) = q = (
∨

i=1,...,k

pj
i)i=1,...,m.

2.4 Scoring Function
Having described how individuals combine to form a team,

we now address the way the team is scored for its perfor-
mance in accomplishing a task. Of course, depending on the
setting, there are different natural scoring-function choices
and here we describe some of them.

S1: All skills required. s(q,J) = 1 if qi ≥ Ji for all
i = 1, . . . ,m and 0 otherwise.

S2: Least-skill dominant. min{1,mini;Ji>0{qi/Ji}}.
S3: Fraction of skills possessed. s(q,J) = |{i;Ji>0∧qi≥Ji}|

|{i;Ji>0}| .

S4: Microaverage of skill. s(q,J) =
∑

i;Ji>0 min(qi,Ji)/Ji

|{i;Ji>0}| .

S5: Macroaverage of skill. s(q,J) =
∑

i min(qi,Ji)∑
i Ji

.

The first two scoring functions are more natural for cases
where a specialist is required for each skill demanded by the
task and, not surprisingly, they do not satisfy Property 4
(decreasing marginal utility). The second is a smoother ver-
sion of the first one. The last three give partial credit for
possession of a subset of the skills. In Lemma 1 we show
that for any of the rules considered in Section 2.3 they sat-
isfy Property 4.

In the case of a binary skill space one can consider the
analogues of the aforementioned functions:

BS1: All skills required. s(q,J) = 1 if qi ≥ Ji for all
i = 1, . . . ,m and 0 otherwise.

BS2: Fraction of skills possessed. s(q,J) = |{i;Ji>0∧qi≥Ji}|
|{i;Ji>0}| .

Note that scoring functions S1 and S2 reduce to the BS1
scoring function, while the S3, S4, and S5 reduce to BS2. We
now state a lemma showing the submodularity properties of
the scoring functions that give partial credits. The proof
will appear in the extended version of this paper.

Lemma 1. Scoring functions S3, S4, S5, and BS2 satisfy
the non-increasing-marginal-utility property (Property 4) if
the profile of a team is obtained from those of its members
according to any of the rules considered in Section 2.3.

Suppose that we want to maximize the score obtained at
each task, subject to constraints on team sizes and the maxi-
mum load of each person. For the team profiling methods in
Section 2.3 and the scoring functions S3, S4, S5, and BS2 in
Section 2.4, this problem can be formulated as the problem
of maximizing a submodular function. Details of the formu-
lation will be given in the extended version of the paper.

Lemma 2. The hill-climbing algorithm [20] for submodu-
lar function optimization, adding one by one the person that
gives to a team the largest increase in the performance func-
tion, provides a 1 − 1/e approximation for maximizing the
sum of the scores, for scoring functions S3, S4, S5, and BS2.

In many scenarios, maximizing the scoring may require
covering all the necessary skills for each task. This motivates
the problem formulation of the next section, that we follow
in the remainder of this paper.

3. PROBLEM CHARACTERIZATION
We next focus on a broad class of balanced task assign-

ment problems having additive skills in the construction of
the team profile (extending the results to the multiplicative
skills case is direct). We focus on scoring by requiring all
skills, which can be trivially extended to require only a frac-
tion of skills, as indeed we do in the experimental section.

3.1 Balanced Task Covering
We consider the following problem: for every task Jj , find

a team Qj that has all the required skills for Jj , minimizing

the workload of the person with the larger number of tasks,
namely, minmaxj L(p

j).
Set Xji = 1 if person pj was assigned to task Ji, Xji = 0

otherwise. The problem can be formulated as an integer
linear program as follows:

minL (1)
n∑

j=1

pj
�Xji ≥ Ji

�, ∀i = 1, . . . , k, � = 1, . . . ,m (2)

k∑
i=1

Xji ≤ L, ∀j = 1, . . . , n (3)

L ≥ 0, Xji ∈ {0, 1} (4)

Constraint (2) ensures that all tasks are executed. Con-
straint (3) limits the number of teams in which a single per-
son participates. This combinatorial problem is a general-
ization of well-known load balancing and covering problems.
For single-skill jobs we observe an instance of load balanc-
ing with restricted assignment [3,4]. This problem is usually
formulated on a bipartite graph with jobs on one side and
machines on the other side, and edge (i, j) exists if job i
can be processed on machine j. That is, each job can only
be assigned to one of the adjacent machines in the bipartite
graph. The goal is to find an assignment of jobs to machines
that minimizes maximum load.

Our problem is harder than restricted assignment, as al-
ready observed in [17], since forming a team requires to solve
a set-cover problem: each feasible team is formed by a set of
people with profiles that cover all the skills required from a
job. In the following we characterize the complexity of the
balanced task covering even for relevant special cases and
provide offline and online optimization algorithms.

3.2 NP-Hardness
The restricted assignment problem is an NP-hard problem

when the number of tasks is large, while it is polynomial-
time solvable for constant number of tasks, k. On the con-
trary, our balanced task covering problem remains NP-hard
even when k = 2. The proof of the following theorem is
omitted due to lack of space and will appear in the extended
version of this paper.

Theorem 1. The balanced task covering problem with 2
tasks is NP-hard.

The next question that we ask is if some interesting special
cases are poly-time solvable. The answer is positive at least
for the following cases:

– the problem with constant number of people and tasks;
– the problem with constant number of tasks and skills.

The problem with constant number of people and tasks,
n, k = O(1), admits a polynomial-time algorithm. We can
enumerate in constant time all feasible and infeasible so-
lutions to the problem given that there exists a constant
number of teams for each task and there exists only a con-
stant number of tasks. Every solution can be checked in
polynomial time.

The problem with constant number of tasks and skills,
k,m = O(1), also admits a polynomial-time algorithm. At
most km = O(1) persons are needed to accomplish the k
tasks. It is therefore sufficient to check all possible teams of
at most km persons, which is a polynomial number.

4. ALGORITHMS
A natural direction for solving the balanced task covering

problem is to provide heuristics or approximation algorithms
both in the offline and in the online case. In the case of
the offline setting, we continue with the class of problems
from the previous section. In the case of the online setting,
we present a full treatment of the binary case. We also
notice that our algorithms can also be adapted to continuous
profiles and to tasks of nonuniform load. Details will be
provided in the extended version of the paper.

4.1 Offline Setting
We present a simple algorithm to compute a logarithmic

approximation for the balanced task covering problem from
Section 3.1. Observe that this result is the best possible
since the balanced task covering problem contains the set
cover problem, which cannot be approximated better than
for a logarithmic factor [23]. In the remainder of this subsec-
tion, we let N = max{mk, n}. The algorithm is inspired by
the well-known randomized rounding algorithm for set cover
(see, for example, [23, Chapter 14]), based on solving the LP
relaxation of the ILP formulation of set cover, and then in-
terpreting the LP solutions as probabilities of including a
set in the cover. We are able to prove the following result;
details of the algorithm and of the proof for the binary case
are given in Appendix A.

Theorem 2. There is a polynomial time, randomized al-
gorithm for the balanced task covering problem such that,
with probability 1 − δ: (i) every task is assigned to a team
possessing all required skills and (ii) the maximum number
of tasks assigned to the same person is at most O

(
log N

δ

)
times the optimum.

4.2 Online Setting
The online setting is of special practical interest, as it is

more realistic to assume that tasks arrive one by one and
have to be assigned immediately to a team, without waiting
for more tasks to arrive. We number tasks by order of ar-
rival. The algorithm has to decide on a team Qi for task i
in the sequence before task i+ 1 arrives.

For evaluating the performances of the online algorithms
we resort to the notion of competitive analysis [7, 15, 22].
Competitive analysis compares an online algorithm against
an offline adversary that knows the entire input sequence in
advance and serves it optimally. An online algorithm is c-
competitive if for any input sequence it provides a solution
with cost bounded by c times the optimal cost. Observe
that the optimal solution may be hard to compute and that
even an online algorithm with unbounded computational re-
sources may not be able to provide an optimal solution given
the lack of information about future tasks.

We propose several heuristics and analyze the competi-
tive ratio achieved by these heuristics. All algorithms we
present select for a task Ji the team Qi that optimizes on a
specific cost function c(Qi) of the current load of all persons
pj ∈ Qi when task Ji is presented. Denote by L(pj) the
load of person j when task Ji is presented, and let Λ be an
appropriately chosen value (it depends on the cost of the op-
timal solution and in the proof of Theorem 3 we show how
to estimate it). We consider four algorithms that, whenever
a task arrives, find a team Q that covers all the required
skills for the current task, and minimizes:

1. Size: c(Q) = |Q|
2. MaxLoad: c(Q) = maxj∈QL(p

j)

3. SumLoad: c(Q) =
∑

j∈Q L(pj)

4. ExpLoad: c(Q) =
∑

j∈Q μ
L(pj)

Λ with μ = 2n

Size: This algorithm picks the team of minimum size among
those that have all of the required skills. This corresponds
to the solution of an unweighted set cover problem for which
we use a standard greedy approximation algorithm that has
approximation ratio O(logmi) if we denote by mi the num-
ber of skills required by task Ji. Although this heuristic tries
to minimize the size of the teams, it does not keep track of
the work done so far, and can overload the few experts that
possess most of the skills. We show indeed the following
lower bound on the competitive ratio of Size:

Fact 1. Size has competitive ratio Ω(m), Ω(n), Ω(k).

Proof. Consider a sequence of k = m/2 tasks. Task Ji,
i = 1, . . . , k, requires skills {2i− 1, 2i}. Person pi only pos-
sesses skill i. Person pm+1 possesses all the skills. MinSize

assigns all the jobs to person pm+1 that has load k. The op-
timal assignment involves each person in at most 1 team.

This heuristic shows that optimizing only on team size
may lead to poor results and that in general we should also
consider individual workload.

MaxLoad: This algorithm requires to solve an unweighted
set cover problem on the skills of Ji restricted to persons of
current load at most � = 0, 1, . . . ,Λ. We stop at the mini-
mum value of � for which we obtain a team with members
of current load at most � that covers all the skills of Ji. We
break ties by picking the team of minimum size |Q| among
the ones with current load at most �. This algorithm rules
out the lower bound of Size since it also optimizes on load.
But it might fall in the opposite problem of forming teams of
very large size when teams of much smaller size and slightly
higher load are possible. This is captured by the following
lower bound.

Fact 2. MaxLoad is Ω(k), Ω(n), Ω(
√
m) competitive.

Proof. Consider a sequence of k = 2n tasks. Tasks
J2i−1,J2i are identical and they can be processed either by
person pi alone or by a team formed by all persons with the
exception of pi: {pj ∈ P, j �= i}. Observe that each job
requires at least n− 1 skills. Different jobs require different
skills. The total number of skills will therefore be at least
m = k(n − 1). Job J2i−1 is assigned from MaxLoad to per-
son i whose load becomes i. Job J2i is therefore assigned to
team {j ∈ P, j �= i} that has all members with load i − 1.
The final load of all persons is n = k/2 whereas the optimal
load is 2 and it is obtained by assigning both jobs J2i−1 and
J2i to person i.

The lower bounds presented for Size and MaxLoad show
that a good algorithm for balanced task covering should
jointly optimize on team size and on max load. This is cap-
tured by the two heuristics we present next, which achieve
this tradeoff by weighting every person by his load when

computing a team that covers all the skills of a job. Sum-

Load and ExpLoad require to solve a weighted set cover prob-
lem rather than an unweighted set cover problem as in Size

and MaxLoad. The greedy algorithm for weighted set cover
provides an O(logm) approximate solution, as in the un-
weighted case [23].

SumLoad: This algorithm weights each person by his load in
the set cover computation performed to cover all the skills of
Ji. This strategy may appear reasonable. It is however pos-
sible to construct instances where all the jobs are assigned
to a single person that possesses all the skills rather than to
a larger team formed by persons with small load. This is
shown in the following lower bound.

Fact 3. SumLoad is Ω(k), Ω(
√
n), Ω(

√
m) competitive.

Proof. The first job presented must be processed by the
team formed by all people. All persons have load 1. Job i,
i > 1 can either be processed by person p1 alone or by a team
formed by the i persons in the range [(i−1)i/2+1, i(i+1)/2].
The sum of the loads of these persons is larger than the load
of p1 that has all jobs assigned. The optimal solution will
instead assign at most 2 jobs to each person. Observe also
that the number of persons and the number of activities is
quadratic in the number of jobs.

We conclude from this lower bound that a good online
algorithm should be more aggressive in weighting persons
with high load.

ExpLoad: This algorithm is more aggressive in penalizing
the inclusion of people who are already overloaded, by ap-
plying an exponential function to their current load. We
study in the following the competitive ratio achieved by this
algorithm.

We observe that an Ω(log k) lower bound is unavoidable
as this is a generalization of the problem of minimizing the
maximum load with restricted assignment [4]. A similar
lower bound is proved for any deterministic and random-
ized online algorithm. The idea of the lower bound applied
to ExpLoad is as follows. Consider a sequence formed by
O(log k) phases. In the first phase n tasks requiring one sin-
gle skill owned by all persons are presented. ExpLoad assigns
one task per person. In the second phase n/2 tasks requiring
one single skill owned by n/2 persons are presented. In the
third phase n/4 tasks requiring one single skill owned only
by n/4 persons are presented. This can be iterated for logn
phases resulting in a maximum load of Ω(log n). Observe
also k = n−1 and m = log n. On the contrary the optimum
can assign all tasks with a maximum load of 2.

A matching upper bound can be proved for ExpLoad. How-
ever, the additional difficulty of solving a weighted set cover
problem results into an additional O(logm) overhead in the
competitive factor. The proof of the following theorem is
given in Appendix B.

Theorem 3. ExpLoad is O(log k logm) competitive.

5. EXPERIMENTS
In this section we present experimental results on the per-

formance of the online algorithms on real-world datasets.
Our data sources are IMDB (the Internet Movie Database),

Bibsonomy (a social bookmarking site), and Flickr (a photo
sharing site). The mapping from them to problem instances

Table 2: Mapping of data to problem instances
Dataset Experts Tasks
IMDB Movie directors Audition actors
Bibsonomy Prolific scientists Interview scientists
Flickr Prolific photographers Judge photos

Table 3: Summary statistics from datasets
Dataset Experts Tasks Skills Skills/ Skills/

expert task
IMDB 725 2 173 21 2.96 11.10
Bibsonomy 816 35 506 793 7.64 4.44
Flickr.art 504 59 869 12 913 49.90 15.73
Flickr.nature 2 879 112 467 26 379 31.25 15.45

in our setting is summarized in Table 2 and explained in the
next section. Summary statistics from these datasets are
included Table 3.

5.1 Datasets
IMDB. Our first dataset is the Internet Movie Database. We
focus on two types of movie personnel, directors and actors.
The movie genres play the role of skills. We assume that
the set of genres of the movies that a person has partici-
pated make the set of skills for that person. For example,
Alfred Hitchcock has the skills {comedy, crime, film-noir,
mystery, romance, thriller}, while Laurence Olivier has the
skills {biography, drama, history, romance, thriller}. We run
our algorithms so that directors represent experts and actors
represent tasks.

This setting simulates a scenario in which people who have
directed a movie create small committees to audition actors.

Bibsonomy. Our second dataset is a social bookmark and
publication sharing system.The dataset contains a large num-
ber of computer-science related publications, where each
publication is written by a set of authors. Publications are
not only peer-reviewed articles, but also tutorials, presenta-
tions, blog posts, and others. The bibsonomy website is used
by a large community of users who employ tags to annotate
the publications. Tags are pre-processed by applying stan-
dard text normalization and frequency filtering operations
to remove stopwords. The set of tags associated with the
papers of one author is used to represent the set of skills for
that author. We partition the set of authors into two sets:
one set representing the experts and another set representing
the tasks. We consider the experts to be the most prolific
authors in the dataset, and this explains why in Table 3 the
number of skills per expert is higher than the number of
skills per task.

This setting simulates a scenario where committees of sci-
entists interview other scientists for a position at a Univer-
sity or research institution.

As anecdotal aggregates from the Bibsonomy dataset, we
mention that the top-10 tags (skills) for all papers are {infor-
mation, social, semantic, ontology, analysis, learning, knowl-
edge, management, software, theory}.
Flickr. We extract multiple datasets from the Flickr photo
sharing portal by a kind of snowball sampling. We start
with a concept c and use the flickr API to obtain a large
number of photos P (c) related with c. This is done by: first,
obtaining a large set of photos P0(c) that contain c as tag;

then, collecting all groupsG(c) that contain a photo in P0(c).
By groups here we refer to flickr groups, which are pools of
photographs centered around one theme. Finally, we collect
all photos P (c) in the groups G(c). In this way we are able
to collect many relevant photos about a concept c, even if c
is not contained directly in the set of tags of those photos.
We have performed experiments for 10 concepts obtaining
similar results, here we report the concepts art and nature.

Each photo of the set P (c) has been uploaded by a user
and is associated with a set of tags. We form a set of experts
as the top contributing users for the photos in P (c), and the
tags of those experts represent their skills. Photos in P (c)
(other than the photos of the experts) represent tasks.

This setting simulates a scenario where a committee of
photographers judges the quality of a set of photos, for in-
stance, for a photo competition.

The 10 most frequent tags (skills) in the dataset Flickr.art
are {art, graffiti, streetart, red, painting, blue, green, street,
sculpture, stencil}, and in Flickr.nature: {nature, water,
flower, winter, macro, snow, sky, flowers, blue, green}.

5.2 Results
We implement the online algorithms described in Sec-

tion 4.2, which process one task at a time. This involved
solving an instance of the set cover algorithm, which is done
using the standard greedy algorithm [10]. The greedy algo-
rithm adds experts to a team, one by one, by selecting the
one who maximizes a score function.d

The results of our algorithms are shown in Figure 1 and
Table 4. We report statistics on the size of the teams and
the load of the experts. We note that Figure 1 and Table 4
present the results of the same experiments, the difference
is that Figure 1 focuses on the center of the distributions,
while the table focuses on the extreme values. In fact, for
better visibility, the y-axes in Figure 1 are rescaled, so many
outliers are not shown.

The first observation is that the algorithm Size makes
smaller teams, and thus the average load is the smallest
among all algorithms. However, we see that Size is very
unfair; it uses a small number of individuals for a large
number of tasks, which results in loading heavily those in-
dividuals. For example, for the IMDB dataset, the director
whose load is 1260 is Steven Spielberg, who is the direc-
tor with the more genres than any other director; Steven
Spielberg has 14 while Robert Zemeckis and Tim Burton

follow with 11 and 10, respectively.
In Table 4 we try to measure overload using three mea-

sures: the maximum load among all experts, the 90% quan-
tile of the load (φ.9), and the average load of the top 10%
of the most loaded users (λ.1). We see that even though the
maximum load of Size is much higher than the maximum
load of the other algorithms, the φ.9 is lower, suggesting
that Size loads only a small fraction of the users, and the
load drops quickly. However, the top users are heavily over-
loaded, so λ.1 is high, as well.
With respect to comparing the other three algorithms

MaxLoad, SumLoad, and ExpLoad, we see that they behave
very similarly. This is a surprising fact, given that the three
algorithms exhibit different behavior in theory. So in our
opinion, this is a case of worst case analysis that does not
happen in typical data. In fact, we have also tested the al-
gorithms on a different number of synthetic data, and the

Figure 1: Distributions of team size |Q| (left) and
expert load L (right), as provided by our algorithms.
Note that the y-axes are rescaled to emphasize the
center of the distribution and not all outliers are
shown.

behavior of the algorithms is still similar. We omit the re-
sults on the synthetic data for space limitations.

Looking a bit closer at the results of the three algorithms
MaxLoad, SumLoad, and ExpLoad, we see that SumLoad makes
teams of sightly larger size, and thus slightly average load,
but it performs better according to the λ.1 measure.

With respect to the distribution of the size of the teams,
we see that it is fairly well concentrated around its mean.
The maximum team size can sometimes be high, however the
90% quantile is always less than two times the mean. We
also report the measure σ.9, which is the maximum team
size so that all tasks are satisfied for at least 90% of their
skills. We see that if we are willing to afford such a partial
coverage the team size drops significantly.

6. RELATED WORK
Creating teams. Balog et al. [6] state that the profile of
experts should not only consider their individual skills, but

Table 4: Statistics on team size and experts load.
We report mean, maximum, and additional columns
as follows: φ.9 denotes the 90% quantile; σ.9 is the
maximum team size that an algorithm allocates pro-
vided that each task is covered only up to 90% of
the required skills; finally, λ.1 is the mean load of
the 10% more loaded experts.

Team size statistics Experts load statistics
Method mean φ.9 σ.9 max mean φ.9 λ.1 max

IMDB

Size 2.31 4 3 5 6.92 11 58 1260
MaxLoad 3.27 4 3 7 9.80 45 53 65
SumLoad 4.75 7 3 10 14.23 32 46 65
ExpLoad 3.80 5 3 9 11.38 32 47 64

Bibsonomy

Size 2.70 5 5 22 117.66 251 397 1417
MaxLoad 2.92 5 3 22 127.13 248 353 700
SumLoad 3.13 6 7 25 136.05 244 343 701
ExpLoad 2.83 5 4 22 123.27 258 365 700

Flickr.art

Size 7.18 11 6 28 852.56 1473 2337 5631
MaxLoad 7.78 12 9 28 924.36 1456 1875 3531
SumLoad 8.09 13 16 31 961.18 1433 1792 3539
ExpLoad 7.54 12 10 31 896.24 1556 1994 3600

Flickr.nature

Size 6.34 10 25 29 247.85 439 823 6645
MaxLoad 7.38 11 27 31 288.22 468 571 941
SumLoad 7.53 12 30 35 294.09 438 535 937
ExpLoad 7.08 11 28 34 276.60 475 587 964

also a description of their collaboration network. Lappas
et al. [17] adopt this view by introducing a weighted social
network indicating communication costs, so that close col-
laborators are joined by edges of small weight. Next, they
look for teams that satisfy a task (in the binary sense in our
framework) and minimize the communication cost, e.g. in
terms of diameter or weight of the minimum spanning tree
for the team. Our framework can be extended to this case by
incorporating the communication costs. Lappas et al. [17]
consider the assignment of a single task, and do not consider
the balance of workload when dealing with more than one
task.

Scheduling jobs. Scheduling jobs on a set of machines with
the goal of minimizing the maximum load on a machine has
been a well-studied problem in computer science since the
seminal work of Graham [16]. We are not reviewing the vast
literature here, but only pointing the reader to the works
that are most closely related to our contribution.

As we described in Section 3.1, the problem that is closest
to the one considered here is that of restricted assignment of
jobs to machines. Here, weighted jobs have to be assigned to
machines, but each job can only be processed by a subset of
the available machines. The goal is to find an assignment of
jobs to machines of minimum maximum load. This problem
is NP-hard and it was studied in [3, 4] in the online setting.
Here, the authors showed a deterministic online heuristic
achieving competitive ratio O(log n) (n being the number of
machines) and they proved that this is asymptotically tight,
even for randomized online algorithms.

Our problem is harder than restricted assignment since, as
already observed in [17], forming a team entails solving a set-
cover problem. This implies a logarithmic lower bound for

many objective functions (e.g., SumLoad) even in the offline
case [23].

Peer reviewing. Refereed conferences and journals require
every submission to be reviewed by several members of a
program committee. Many such venues receive hundreds of
submissions and it is not possible to compute by hand a
matching that optimizes fitness and working load. The PC
chair matches papers to reviewers based on her knowledge
of submissions and PC members, with the help of scores
that are computed automatically from keywords provided
by PC members and authors. This is a matching problem
for which several systems have recently been proposed, for
instance Easychair,1 Linklings,2 and Softconf.3 Easychair
is currently based on a preliminary bidding process where
reviewers rank papers into three classes. The problem of pro-
viding efficient solutions in the bidding model has recently
been addressed in [19]. In this paper, we have focused on
a covering problem instead of a matching problem, and ex-
cluded explicit bids.

Determining expertise. The algorithms we have pre-
sented require knowledge about the profiles of skills of the
experts. For best performance in a real system, this should
be done with a state-of-the-art expert-profiling method.

Early expert-finding methods could be classified basically
into methods with a strong Information Retrieval (IR) com-
ponent or methods with a strong Social Networks (SN) com-
ponent. The IR approach can be exemplified by Craswell et
al. [12] where relevant documents are concatenated to create
a “person-document” corpus, over which a standard docu-
ment search system is run. Balog et al. [5] refined this to
incorporate document relevance. The SN approach can be
exemplified by Abrol et al. [1] where a graph of documents
and people is built and connections are inferred from interac-
tion histories. Other examples use HITS and/or PageRank
in the context of online fora [24] or e-mail exchanges [9].

Most current approaches incorporate both IR and SN as-
pects [13]. Expert finding in general has gained considerable
attention in the research community since TREC started to
incorporate an expert-finding task [11].

7. CONCLUSIONS
We have described and formally characterized a task as-

signment problem, and proposed several efficient and effec-
tive solutions to solve it. Our results, both theoretical and
experimental, show that greedy methods for an online sce-
nario can be effective in practice, as long as they consider
both team sizes and workload of members.

Experimentally, we observe that even näıve methods, such
as greedily minimizing team size, behave similarly with re-
spect to the average distribution of workload. However,
incorporating considerations of workload as the algorithm
performs the online assignment of people to tasks, allows to
reduce significantly the workload of the most-loaded experts.

Future work. We plan to study other variants of the team-
assignment problem, as well as to investigate key application
scenarios. We also plan to address the problem of learning
the skills of experts, as well as coping with issues such as
dynamicity (experts joining and leaving the system) and co-
ordination costs. In general, massive collaboration scenarios
1http://www.easychair.org/
2http://www.linklings.com/
3http://www.softconf.com/

present many algorithmic challenges. One of them is the
task assignment problem we have described, but there are
many other areas including reputation management, social-
network-aware expert finding and document retrieval, and
distributed decision making, among others.

Key references: [17].

8. REFERENCES
[1] M. Abrol, U. Mahadevan, K. McCracken,

R. Mukherjee, and P. Raghavan. Social networks for
enterprise webs. In Proc. of WWW, 2002.

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and
O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine
scheduling. J. ACM, 44(3):486–504, 1997.

[3] Y. Azar. On-line load balancing. In Theoret. Comp.
Sci. Springer, 1992.

[4] Y. Azar, J. Naor, and R. Rom. The competitiveness of
on-line assignments. In Proc. of SODA, 1992.

[5] K. Balog, L. Azzopardi, and M. de Rijke. Formal
models for expert finding in enterprise corpora. In
Proc. of SIGIR, New York, NY, USA, 2006. ACM
Press.

[6] K. Balog and M. De Rijke. Determining expert
profiles (with an application to expert finding). In
Proc. of IJCAI, San Francisco, CA, USA, 2007.
Morgan Kaufmann.

[7] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press,
1998.

[8] F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley Professional,
1995.

[9] C. S. Campbell, P. P. Maglio, A. Cozzi, and B. Dom.
Expertise identification using email communications.
In CIKM, 2003.

[10] V. Chvatal. A greedy heuristic for the set-covering
problem. Math. of Operations Research, 4(3), 1979.

[11] N. Craswell, A. P. de Vries, and I. Soboroff, editors.
Proc. of 14th TREC, volume 500-266 of Inf. Tech.
Lab. NIST Special Pubs. NIST, 2005.

[12] N. Craswell, D. Hawking, A. marie Vercoustre, and
P. Wilkins. P@noptic expert: Searching for experts
not just for documents. In Proc. of AusWeb, 2001.

[13] H. Deng, I. King, and M. R. Lyu. Formal models for
expert finding on DBLP bibliography data. In ICDM,
2008.

[14] D. Dubhashi and A. Panconesi. Concentration of
Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, 2009.

[15] A. Fiat and G. J. Woeginger, editors. Online
algorithms, volume 1442 of LNCS. Springer, 1998.

[16] R. L. Graham. Bounds on multiprocessing anomalies
and related packing algorithms. In Proc. of AFIPS.
ACM, 1972.

[17] T. Lappas, K. Liu, and E. Terzi. Finding a team of
experts in social networks. In Proc. of KDD. ACM,
2009.

[18] S. Leonardi. On-line network routing. In A. Fiat and
G. J. Woeginger, editors, Online algorithms. Springer,
1998.

[19] K. Mehlhorn. Assigning papers to referees. In ICALP,
2009.

[20] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis
of the approximations for maximizing submodular set
functions. Math. Programming, (14), 1978.

[21] C. Shirky. Here Comes Everybody: The Power of
Organizing Without Organizations. Penguin Press,
2008.

[22] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Comm. ACM, 28(2),
1985.

[23] V. V. Vazirani. Approximation algorithms. Springer,
2001.

[24] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise
networks in online communities: structure and
algorithms. In Proc. of WWW, New York, NY, USA,
2007. ACM.

APPENDIX
A. APPROXIMATION OF BALANCED TASK

COVERING
Proof of Theorem 2. We give the algorithm and the proof
for the binary profiles and we let the continuous [0, 1] case
for the extended version of the paper.

Recall the ILP formulation presented in Section 3.1. In
the case of binary profiles, constraint (2) can be written as

n∑
j=1

j: p
j
�
=1

Xji ≥ 1, ∀i, � : Ji
� = 1. (5)

We solve optimally the corresponding linear programming
relaxation, and let {X̂ji} be the corresponding fractional
solution, so that we have

n∑
j=1

j: p
j
�
=1

X̂ji ≥ 1, ∀i, � : Ji
� = 1. (6)

Let N = max{mk, n}. The algorithm performs R rounds
(with R to be determined later). In each round, person pj

is assigned to the task Ji with probability X̂ji, indepen-
dently of other rounds and of other assignments within the
same round. Set Xji(r) = 1 if pj was assigned to Ji in
the rth round and 0 otherwise, and let L(pj(r)) be the load
on person j in the rth round of assignments. At the end,
Xji = 1 (i.e., person pj is assigned to task Ji) if and only if
Xji(r) = 1 for at least one round r. Let L∗ be the optimum
value. Consider the �th skill required by job Ji. The prob-
ability that the skill is not covered (i.e., that constraint (5)
is not satisfied) in the rth round is at most

n∏
j=1

j: p
j
�
=1

(1− X̂ji) ≤
∏
j

e−X̂ji = e−
∑

j X̂ji ≤ 1

e
, (7)

by using Equation (6). From that we obtain that

P
(
∃(i, �) : Jj

� not covered
)
≤ mke−R ≤ Ne−R,

and note that this quantity is at most δ/2, if we set R =
ln(2N/δ).

To bound the expected cost of the solution, note first that
P(Xji = 1) = 1 − (1 − X̂ji)

R ≤ RX̂ji.
4 This implies that

for all j we have that E
[∑

i Xji

] ≤ RL∗. Since, for every
j, the Xji’s are mutually independent, a simple application
of Chernoff’s bound [14, Equation (1.8)], allows to conclude

that P
(
L(pj) > 2eRL∗) ≤ 2−2eRL∗ ≤ 4−eR. We therefore

have that

P
(
∃j : L(pj) > 2eRL∗

)
≤ n4−eR ≤ N4−eR ≤ δ

2
,

for our choice of R.
For the sake of brevity, we define the events

E1 = (∃(i, �) : Ji
� not covered)

E2 =
(
∃j : L(pj) > 2eRL∗

)
,

and note that event E2 implies that the cost of the solution L
is at most O

(
log N

δ

)
the cost of the optimal solution. Then,

from what we have shown we can conclude that

P(E1 ∨ E2) ≤ δ.

B. PROOF OF ALGORITHM EXPLOAD
Proof of Theorem 3. The proof follows the one of Aspnes,
et al. [2] for the competitive ratio of online load balancing
as adapted in [18]. For the proof of the theorem it is conve-
nient to use a slightly different notation from the rest of the
text. Denote by Q(i) and Q∗(i) the team used for job i by
the algorithm and by the optimal solution. Let Lj(i) =
|{i′ < i : j ∈ Q(i′)}| and L∗

j (i) = |{i′ < i : j ∈ Q∗(i′)}| be
the online and the optimal load of person pj when job i
is presented. Let Λ = maxj=1,...,nLj(k + 1) and Λ∗ =
maxj=1,...,nL

∗
j (k + 1) be the online and the optimal max-

imum load on a person at the end of the sequence. Our goal
is to minimize the maximum load.

Let μ = 2n with n being the total number of persons. The
algorithm for job i is as follows:

1. Let cj(i) = μ
Lj(i)

Λ be the “exponential” cost of person j
when job i is presented. We use μ = 2n.

2. Find the team Q(i) with minimum cost
∑

j∈Q(i) cj(i) that
can cover the job.

3. Assign job i to team Q(i)

Observe that in reality we cannot find a team Q(i) of min-
imum cost but only a team of approximately minimum cost
by using an approximation algorithm for weighted set cover.
Denote by c the approximation ratio of the weighted set
cover algorithm used for finding a team of minimum expo-
nential cost that covers all the skills of a job. The standard
greedy algorithm achieves an O(logm) approximation with
m total number of skills of a job.

Assume for the moment that the algorithm knows the
optimal load Λ∗. We first show that if we assign Λ =
2cΛ∗ log μ, then the load on every person is at most Λ.

Consider the time at which job i is presented. The cost
of any team Q(i) is at most Z(i) =

∑n
j=1 cj(i), the sum of

the exponential costs of all the persons when job i is pre-
sented. We prove in the following that Z(i) ≤ 2n, subject to

4The inequality follows from the fact that the function
f(x) = (1 − x)R − 1 + Rx is nonnegative in [0, 1] and thus
(1− x)R ≥ 1−Rx.

accepting every job i′ < i on a team Q(i′) with exponential
cost that is at most c times the minimum. This immediately
implies, ∀j ∈ Q(i):

μ
Lj(i)

Λ ≤ Z(i) ≤ 2n,

and then Lj(i) ≤ Λ = O(cΛ∗ log μ).
We use the following potential function to prove the claim:

Φ(i) =
n∑

j=1

cj(i)

(
1− L∗

j (i)

2Λ∗

)
.

We have Z(i) ≤ 2Φ(i) = 2(Φ(i)−Φ(0))+2n. Z(i) is then
bounded by 2n if Φ does not increase when job i′ < i is
scheduled. The proof is as follows:

Φ(i+ 1)− Φ(i) =
∑

j∈Q(i)

(μ
Lj(i+1)

Λ − μ
Lj(i)

Λ)

− 1

2Λ∗
∑

j∈Q(i)∪Q∗(i)

(μ
Lj(i+1)

Λ L∗
j (i+ 1)− μ

Lj(i)

Λ L∗
j (i))

≤
∑

j∈Q(i)

(μ
Lj(i+1)

Λ − μ
Lj(i)

Λ)

− 1

2Λ∗
∑

j∈Q∗(i)

(μ
Lj(i+1)

Λ L∗
j (i+ 1)− μ

Lj(i)

Λ L∗
j (i))

≤
∑

j∈Q(i)

(μ
Lj(i)+1

Λ − μ
Lj(i)

Λ)

− 1

2Λ∗
∑

j∈Q∗(i)
(μ

Lj(i)

Λ (L∗
j (i) + 1)− μ

Lj(i)

Λ L∗
j (i))

=
∑

j∈Q(i)

(μ
1
Λ − 1)μ

Lj(i)

Λ − 1

2Λ∗
∑

j∈Q∗(i)

μ
Lj(i)

Λ

=
∑

j∈Q(i)

(2
log μ

2cΛ∗ log μ − 1)μ
Lj(i)

Λ − 1

2Λ∗
∑

j∈Q∗(i)

μ
Lj(i)

Λ

≤ 1

2cΛ∗
∑

j∈Q(i)

μ
Lj(i)

Λ − 1

2Λ∗
∑

j∈Q∗(i)

μ
Lj(i)

Λ

≤ 0

The last two inequalities hold because 2x − 1 ≤ x if 0 ≤
x ≤ 1, and because Q(i) is c-approximated minimum cost
for task i.

To complete the description of the result we are left to
remove the assumption that the algorithm knows the opti-
mal load Λ∗. This is usually done [2] by using a doubling
technique based on the observation that if the algorithm ex-
ceeds load Λ then we do not have a correct estimation of Λ∗,
and we can double the current value of Λ∗. This results in
a multiplicative factor of 4 in the competitive ratio of the
algorithm.

