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Abstract The study of other-regarding player behavior such as altruism and
spite in games has recently received quite some attention in the algorithmic
game theory literature. Already for very simple models, it has been shown that
altruistic behavior can actually be harmful for society in the sense that the
price of anarchy may increase as the players become more altruistic. In this
paper, we study the severity of this phenomenon for more realistic settings in
which there is a complex underlying social structure, causing the players to
direct their altruistic and spiteful behavior in a refined player-specific sense
(depending, for example, on friendships that exist among the players). Our
findings show that the increase in the price of anarchy is modest for congestion
games and minsum scheduling games, whereas it is drastic for generalized
second price auctions.

1 Introduction

Many practical situations involve a group of strategic decision makers who at-
tempt to achieve their own self-interested goals. It is well known that strategic
decision making may result in outcomes that are suboptimal for the society as
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a whole. The need to gain an accurate understanding of the extent of subop-
timality caused by selfish behavior has led to the study of the inefficiency of
equilibria in algorithmic game theory. In this context, a common inefficiency
measure is the price of anarchy [21], which relates the worst-case cost of a
Nash equilibrium to the one of an optimal outcome.

More recently, quite some attention has been given to more general set-
tings in which the players do not necessarily behave entirely selfishly, but may
alternatively exhibit spiteful or altruistic behavior; see, for instance, [2,4,5,
7–9,13,16–18]. Studying such alternative behaviors in games is motivated by
the observation that altruism and spite are phenomena that frequently occur
in real life (see, for example, [14]). Consequently, it is desirable to incorporate
such alternative behavior in game-theoretical analyses.

Previous work on the price of anarchy for spiteful and altruistic games has
focused on simple models of spite and altruism, where a spite/altruism level αi

is associated to each player i denoting the extent to which his perceived cost
is influenced by any nonspecific other player. Already for these simple models
it has been observed in a series of papers [5,7,8] that altruistic behavior can
actually be harmful in the sense that the price of anarchy may increase as
players become more altruistic. This observation served as a starting point for
the investigations conducted in this paper. The main question that we address
here is: How severe can this effect be if one considers more refined models of
altruism that capture complex social relationships between the players?

Our Contributions. In this paper, we study a more general player-specific
model of spite and altruism. Our model can be viewed as extending a given
strategic game by imposing a social-network structure on top of the players,
which specifies for each pair of players (i, j) an altruism/spite level αij signify-
ing how much player i cares about player j; these relations are not necessarily
symmetric. This allows us to model more realistic settings in which the behav-
ior of the players depends on a complex underlying social structure, expressing
friendships and animosities among the players. Our altruistic games fall into
the framework of social context games proposed in [1].

For this general model of games with altruism and spite, we are interested
in studying the price of anarchy. The smoothness framework, originally intro-
duced by Roughgarden [23], has become a standard method for proving upper
bounds on the price of anarchy. Basically, this framework shows that such
bounds can be derived by establishing a certain smoothness condition. An
additional strength of this approach is that the smoothness condition allows
to derive upper bounds on the price of anarchy for various solution concepts,
ranging from pure Nash equilibria to coarse correlated equilibria; the latter be-
ing naturally related to outcomes resulting from natural learning algorithms
(see, for example, Young [27]). Here, we extend the smoothness framework
such that it can be used conveniently in our setting.

Using this extension, we prove upper bounds on the price of anarchy for
altruistic versions of three classes of well-studied games: congestion games,
minsum scheduling games, and generalized second price auctions. We show

2



that for unrestricted altruism levels the price of anarchy is unbounded. In
particular, this happens if there is a player i who cares more about some friend
j than about himself, that is, αij > αii. We therefore derive our upper bounds
under the mild assumption that each player cares positively about himself and
he cares about any other player at most as much as he cares about himself;
we refer to this as restricted altruistic social context. Under this assumption,
we derive the following upper bounds on the coarse price of anarchy:

– A bound of 7 for altruistic linear congestion games, and a bound of ϕ3 ≈
4.236 for the special case of singleton linear congestion games, where ϕ =
(1 +

√
5)/2 denotes the golden ratio.

– A bound of 4+2
√
3 ≈ 7.4641 and 12+8

√
2 ≈ 23.3137 for altruistic minsum

machine scheduling games for related and unrelated machines, respectively.
– A bound of 2(n+1) for altruistic generalized second price auctions, where

n is the number of players.

Our results therefore show that for congestion games and minsum schedul-
ing games the price of anarchy cannot drastically increase. Specifically, it re-
mains constant, independently of how complex the underlying altruistic social
structure is. On the other hand, for generalized second price auctions the price
of anarchy may degrade quite drastically: we prove an upper bound of O(n),
as opposed to a small constant which is known for the purely selfish setting [6].

Our upper bound proof for singleton congestion games uses a novel proof
approach. Typically, for congestion games, smoothness is shown by massaging
the smoothness definition such that eventually one can argue for each facility
separately. A similar approach turns out to be too weak to derive the bound
of ϕ3 here. Instead, we use a more refined amortized argument by distributing
some additional “budget” unevenly among the facilities. We believe that this
approach might be of independent interest.

Related Work. There are several papers that propose models of altruism and
spite [4,5,7–9,13,16–18]. All these models are special cases of the one studied
here. Among these articles, the inefficiency of equilibria in the presence of
altruistic/spiteful behavior was studied for various games in [5,7–9,13]. After
its introduction in [23], the smoothness framework has been adapted in various
directions [24–26], including an extension to a particular model of altruism in
[8], which constitutes a special case of the altruistic games considered here.

Biló et al. [2] also studied social context congestion games, in the case
where the perceived cost of a player is the minimum, maximum, or sum of
the immediate cost of his neighbors. They establish, among other results, an
upper bound of 17/3 on the pure price of anarchy of linear congestion games
for a special case of the setting we study here.

Related but different from our setting, is the concept of graphical congestion
games [3,15]. Here the cost and the strategy set of a player depends only on
a subset of the players.

After publication of a preliminary conference version of the present paper,
follow-up work by Rahn and Schäfer appeared as [22]. In their paper, the
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authors relate the study of altruistic extensions of games to a class of games
named social contribution games, and improve (among other things) some of
the upper bounds we give here.

2 Preliminaries

Altruistic Extensions of Games. We study the effect of altruistic behavior
in strategic games. To model the complex altruistic relationships between the
players, we equip the underlying game with an altruistic social context. More
precisely, let Γ = (N, {Σi}i∈N , {ci}i∈N ) be a strategic game (termed base
game), where N = {1, . . . , n} is the set of players, Σi is the strategy set of
player i, and ci : Σ → R is the direct cost function of player i that maps every
strategy profile s ∈ Σ = Σ1×· · ·×Σn to a real value. Unless stated otherwise,
we assume that Γ is a cost minimization game, that is, every player i wants to
minimize his individual cost function ci. Further, we assume that an altruistic
social context is given by an n× n matrix α ∈ Rn×n.

Given a base game Γ and an altruistic social context α, the α-altruistic
extension of Γ is defined as the strategic game Γα = (N, {Σi}i∈N , {cαi }i∈N ),
where for all i ∈ N and s ∈ Σ, the perceived cost cαi (s) of player i is given by

cαi (s) =

n
∑

j=1

αijcj(s). (1)

Thus, the perceived cost of player i in the α-altruistic extension is the αij-
weighted sum of the individual direct costs of all players in the base game. A
positive (negative) αij value signifies that player i cares positively (negatively)
about the direct cost of player j, which can be interpreted as an altruistic
(spiteful) attitude of i towards j. Note that αii specifies how player i cares
about himself; we also call αii the self-perception level. For simplicity, we will
often refer to the resulting game Γα as the α-altruistic game, without explicitly
mentioning the base game Γ and the altruistic social context α.

The above viewpoint has a natural interpretation in terms of social net-
works : Suppose the players in N are identified with the nodes of a complete
directed graph G = (N,A). The weight of an edge (i, j) ∈ A is equal to αij ,
specifying the extent to which player i cares about the cost of player j.

The main focus of this paper is on altruistic behavior. We distinguish be-
tween unrestricted and restricted altruistic social contexts α. In the unre-
stricted case we assume that αij ≥ 0 for every i, j ∈ N ; in particular, the
self-perception level of a player can be zero. In this case, one can prove triv-
ial lower bounds for the price of anarchy, just by setting αij = 0, for all
i, j. For this reason we consider also the more interesting restricted case. In
the restricted case, every player has a positive self-perception level and cares
about himself at least as much as about any other player, namely, αii > 0 and
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αii ≥ αij ≥ 0 for every i, j ∈ N , i 6= j. In the latter case, we can normalize α
without loss of generality such that αii = 1 for every player i.1

Coarse Equilibria and the Price of Anarchy. We are interested in the
efficiency loss caused by altruistic behavior. Let C : Σ → R be a social cost
function that maps strategy profiles to real numbers. Most of the time in this
paper, the social cost will refer to the sum of the direct costs of all players,
namely, C(s) =

∑n
i=1 ci(s). The motivation therefore is that we are interested

in the efficiency of the outcome resulting from altruistic behavior, which is
modeled through the altered perceived cost functions.

We focus on the inefficiency of coarse equilibria, which are defined as fol-
lows: Let σ be a probability distribution over Σ. Let σ−i denote the projection
of σ onto

Σ−i = Σ1 × · · · ×Σi−1 ×Σi+1 × · · · ×Σn.

Then σ is a coarse equilibrium of the altruistic game Γα if, for every player i
and every strategy s∗i ∈ Σi, it holds that

Es∼σ[c
α
i (s)] ≤ Es−i∼σ−i

[cαi (s
∗
i , s−i)].

We use CE(Γα) to denote the set of coarse equilibria of Γα. Coarse equilibria
include several other solution concepts, such as correlated equilibria, mixed
Nash equilibria, and pure Nash equilibria.

We study the price of anarchy [21] of coarse equilibria of altruistic games.
For an altruistic game Γα, define

POA(Γα) = sup
s∈CE(Γα)

C(s)

C(s∗)
,

where s∗ is a strategy profile that minimizes C. The coarse price of anarchy
of a class of altruistic games G is defined as

POA(G) = sup
Γα∈G

POA(Γα).

Some material has been omitted from the main body of the paper and can be
found in the appendix.

3 Smoothness

Smoothness. Roughgarden [23] introduced a general smoothness framework
to derive bounds on the coarse price of anarchy. Next we extend this framework
to α-altruistic games with arbitrary social cost functions.

1 To see this, note that, by dividing all αij by αii > 0, the set of equilibria and the social
cost of any outcome remain the same.
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Definition 1 Let Γα be an α-altruistic extension of a cost minimization game
with α ∈ Rn×n and social cost function C. Further, let s∗ be a strategy profile
that minimizes C. Γα is (λ, µ)-smooth if there exists a strategy profile s̄ ∈ Σ
such that for every strategy profile s ∈ Σ it holds that

n
∑

i=1

n
∑

j=1

αij(cj(s̄i, s−i)− cj(s)) ≤ λC(s∗) + (µ− 1)C(s). (2)

The following theorem shows that (λ, µ)-smoothness implies a bound on
the coarse price of anarchy of α-altruistic games.

Theorem 1 Let Γα be an α-altruistic extension of a cost minimization game
with α ∈ Rn×n and social cost function C. If Γα is (λ, µ)-smooth with µ < 1,
then the coarse price of anarchy of Γα is at most λ/(1− µ).

In the purely selfish setting (i.e., when αii = 1 and αij = 0 for every
i, j ∈ N , i 6= j) our smoothness definition is slightly more general than the
one in [23] where (2) is required to hold for any arbitrary strategy profile s∗

and with s̄ = s∗. Also, in [23] the analogue of Theorem 1 is shown under the
additional assumption that C is sum-bounded, that is, C(s) ≤∑i ci(s). Here,
we get rid of this assumption.

Proof (Theorem 1) Let σ be a coarse equilibrium for Γα and let s be a random
variable with distribution σ. Further, let s̄ be a strategy profile for which the
smoothness condition (2) holds and let s∗ ∈ Σ be an optimal strategy profile.
The coarse equilibrium condition implies that for every player i ∈ N :

n
∑

j=1

αijE[cj(s̄i, s−i)]−
n
∑

j=1

αijE[cj(s)] ≥ 0.

By summing over all players and using linearity of expectation, we obtain

E[C(s)] ≤ E[C(s)] +E





n
∑

i=1

n
∑

j=1

αij(cj(s̄i, s−i)− cj(s))



 .

Now we use the smoothness property (2) and obtain

E[C(s)] ≤ E[C(s)] +E[λC(s∗) + (µ− 1)C(s)] = λC(s∗) + µE[C(s)].

Since µ < 1, this implies that the coarse price of anarchy is at most λ/(1−µ).
⊓⊔
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Efficiency of no-regret algorithms. The above smoothness definition al-
lows us to import some additional results from [23]. In particular, it proves
useful in the context of natural learning algorithms generating no regret se-
quences.

Suppose Γα satisfies the (λ, µ)-smoothness definition (Definition 1) with
s̄ = s∗. Consider a sequence s1, . . . , sT of outcomes of Γα of a game. Let s∗

be an optimal outcome that minimizes the social cost function C. Define

δαi (s
t) = cαi (s

t)− cαi (s
∗
i , s

t
−i)

for every i ∈ N and t ∈ {1, . . . , T }. Let ∆α(st) =
∑n

i=1 δ
α
i (s

t). We have

∆α(st) =

n
∑

i=1

(

cαi (s
t)− cαi (s

∗
i , s

t
−i)
)

=

n
∑

i=1

n
∑

j=1

αij(cj(s
t)− cj(s

∗
i , s

t
−i)).

Exploiting the (λ, µ)-property, we obtain

C(st) ≤ λ

1− µ
C(s∗) +

∆α(st)

1− µ
. (3)

Suppose that s1, . . . , sT is a sequence of outcomes in which every player expe-
riences vanishing average external regret, that is, for every player i ∈ N

T
∑

t=1

cαi (s
t) ≤

[

min
s′
i
∈Σi

T
∑

t=1

cαi (s
′
i, s

t
−i)

]

+ o(T ).

We obtain that for every player i ∈ N :

1

T

T
∑

t=1

δαi (s
t) ≤ 1

T

(

T
∑

t=1

cαi (s
t)− min

s′
i
∈Σi

T
∑

t=1

cαi (s
′
i, s

t
−i)

)

= o(1). (4)

By summing (3) over all t and using (4), we obtain that the average cost of
the sequence of T outcomes is

1

T

T
∑

t=1

C(st) ≤ λ

1− µ
C(s∗) +

1

1− µ

n
∑

i=1

(

1

T

T
∑

t=1

δαi (s
t)

)

T→∞−→ λ

1− µ
C(s∗).

4 Congestion Games

In a congestion game Γ = (N,E, {de}e∈E , {Σi}i∈N) we are given a set of
players N = {1, . . . , n}, a set of facilities E with a delay function de : N → R

for every facility e ∈ E, and a strategy set Σi ⊆ 2E for every player i ∈ N .
For a strategy profile s ∈ Σ = Σ1 × · · · × Σn, define xe(s) as the number of
players using facility e ∈ E, that is, xe(s) = |{i ∈ N : e ∈ si}|. The direct cost
of player i is defined as ci(s) =

∑

e∈si
de(xe(s)) and the social cost function is

given by C(s) =
∑n

i=1 ci(s). In a linear congestion game, the delay function
of every facility e ∈ E is of the form de(x) = aex+ be, where ae, be ∈ Q≥0 are
nonnegative rational numbers.
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4.1 General Linear Congestion Games

Theorem 2 Every α-altruistic extension of a linear congestion game with
restricted altruistic social context α is (73 ,

2
3 )-smooth. Therefore, the coarse

price of anarchy is at most 7 for these games.

We need the following simple technical lemma for the proof of Theorem 2.
Its proof is in the appendix.

Lemma 1 For every two integers x, y ∈ N

(x+ 1)y + xy ≤ 7

3
y2 +

2

3
x2. (5)

Proof (of Theorem 2) Let s be an arbitrary strategy profile and let s∗ be a
strategy profile that minimizes C. We can assume without loss of generality
that de(x) = x for all e ∈ E [20].

Let xe and x∗
e refer to xe(s) and xe(s

∗), respectively. Observe that
ci(s

∗
i , s−i) ≤

∑

e∈s∗
i
(xe + 1). Taking the sum over all players, we obtain

n
∑

i=1

(ci(s
∗
i , s−i)− ci(s)) ≤

n
∑

i=1

∑

e∈s∗
i

(xe + 1)− C(s)

=
∑

e∈E

x∗
e(xe + 1)− C(s).

(6)

Note that the above derivation is a bound on the selfish part of the left
hand side of the smoothness condition. Next, we bound the altruistic part of
the smoothness condition. Fix some player i ∈ N and let x′

e = xe(s
∗
i , s−i).

Note that

x′
e =











xe + 1 if e ∈ s∗i \ si ,
xe − 1 if e ∈ si \ s∗i ,
xe otherwise.

Thus,

∑

j 6=i

αij(cj(s
∗
i , s−i)− cj(s)) =

∑

j 6=i





∑

e∈sj∩(s∗
i
\si)

αij −
∑

e∈sj∩(si\s∗i )
αij





=
∑

e∈s∗
i
\si

∑

j 6=i:e∈sj

αij −
∑

e∈si\s∗i

∑

j 6=i:e∈sj

αij .

Summing over all players and exploiting that in the restricted case 0 ≤
αij ≤ 1 for every i, j ∈ N , i 6= j, we can bound

n
∑

i=1





∑

e∈s∗
i
\si

∑

j 6=i:e∈sj

αij −
∑

e∈si\s∗i

∑

j 6=i:e∈sj

αij



 ≤
n
∑

i=1

∑

e∈s∗
i

∑

j:e∈sj

1 =
∑

e∈E

xex
∗
e.

(7)
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Combining (6) and (7) and using Lemma 1, we conclude that

∑

i,j

αij(cj(s
∗
i , s−i)− cj(s)) ≤

7

3
C(s∗) +

(

2

3
− 1

)

C(s)

as desired. ⊓⊔

Unrestricted altruistic social context. Theorem 2 considers congestion
games with restricted altruistic social context α. This assumption is required;
we now present an example showing that the price of anarchy is unbounded if
the altruistic social context is unbounded.

Example 1 Let (N,E, {de}e∈E , {Σi}i∈N} be a congestion game with N =
{1, 2} and E = {1, 2, 3, 4}. Let the delay functions be defined by d1(x) =
d3(x) = x and d2(x) = d4(x) = Kx for all x, where K is a large constant. The
strategy sets are Σ1 = {{1, 2}, {3}}, Σ2 = {{3, 4}, {1}}. Suppose furthermore
that α is given by α11 = α22 = 0 and α12 = α21 = 1.

Then observe that in the α-altruistic extension of this game, the strategy
profile ({1, 2}, {3, 4}) is a pure equilibrium with social cost 2K+2. The optimal
social cost is 2, and is attained by the strategy profile ({3}, {1}). The price of
anarchy in this game is therefore K +1, and K can be taken arbitrarily large,
so the price of anarchy is unbounded.

4.2 Singleton Congestion Games

We derive a better smoothness result for singleton congestion games with iden-
tical delay functions, that is, when Σi ⊆ E for every i ∈ N , so that for each
strategy s ∈ Σi we have that |s| = 1.

Theorem 3 Every α-altruistic extension of a singleton linear congestion
game with identical delay functions on all facilities under restricted altruis-
tic social context α is (1+ϕ, 1/ϕ2-smooth, where ϕ = (1+

√
5)/2 is the golden

ratio. Therefore, the coarse price of anarchy is at most ϕ3 ≈ 4.236 for these
games.

To prove this theorem, we use a novel proof approach. In most existing
proofs one first massages the smoothness condition to derive an equivalent
condition summing over all facilities (instead of players), and then establishes
smoothness by reasoning for each facility separately. If we follow this approach
here, we again obtain an upper bound of 7. Instead, we use an amortized
argument here to derive our improved bound.

A careful analysis (details can be found in the appendix) can show that the
smoothness definition (2) for singleton linear congestion games with s̄ = s∗ is
equivalent to

n
∑

i=1

∑

j 6=i

(

λ
∣

∣s∗i ∩ s∗j
∣

∣+ (µ+ αij) |si ∩ sj | − (1 + αij) |s∗i ∩ sj |
)

+(λ+µ−1)n ≥ 0.

(8)
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We translate the proof of this inequality to a coloring problem on a suitably
defined graph. We construct an extended social network as follows: For every
player i ∈ N we introduce two nodes i and i∗ representing player i under s
and s∗, respectively. We call the former type of nodes s-nodes and the latter
type of nodes s∗-nodes. For every two players i, j ∈ N with i 6= j we introduce
four edges: (i, j) with weight 2µ + αij + αji, (i

∗, j∗) with weight 2λ, (i∗, j)
with weight −(1 + αij), and (i, j∗) with weight −(1 + αji). We identify the
set of facilities E with a set of m colors, such that E = [m]. The colors
assigned to i and i∗ are si and s∗i , respectively. Call an edge e = (u, v) in the
extended network c-monochromatic if both u and v have color c. In addition,
we distribute a total budget of (λ+µ−1)n among the 2n nodes of the extended
network.

With the viewpoint of the previous paragraph, the left-hand side of (8) is
equal to the total weight of all c-monochromatic edges (summed over all colors
c) plus the total budget of all nodes. The idea now is to argue that we can fix λ
and µ such that for each color c ∈ [m] the total weight of all c-monochromatic
edges plus the respective node budget is at least 0. The crucial insight to derive
our improved bound is that the budget is split unevenly among the nodes: we
assign a budget of (λ+ µ− 1) to every s-node and 0 to every s∗-node.

Fix some color c ∈ [m] and consider the subgraph of the extended network
induced by the nodes having color c. Partition the nodes into the set Sc of s-
nodes and the set S∗

c of s∗-nodes. Imagine we draw this subgraph with all nodes
in Sc put on the left-hand side and all nodes in S∗

c put on the right-hand side.
The edges from Sc to S∗

c are called crossing edges. The edges that stay within
Sc or S∗

c are called internal edges. Let x = xc = |Sc| and y = yc = |S∗
c |. Note

that the internal edges in Sc constitute a complete graph on x nodes. Similarly,
the internal edges in S∗

c constitute a complete graph on y nodes. Note that the
crossing edges constitute a Kx,y with a few edges missing, namely the pairs
(i, i∗) representing the same player i (which are nonexistent by construction).
Let z = zc be the number of such pairs.

In the worst case, αij = 0 for all internal edges and αij = 1 for all crossing
edges. The total contribution to the left-hand side of (8) that we can account
for color c is then

2µ · 1
2x(x − 1) + 2λ · 1

2y(y − 1)− 2 · (xy − z) + (λ+ µ− 1) · x
= µx2 + λy2 − 2xy + (λ − 1)x− λy + 2z. (9)

We need the following lemma, whose proof can be found in the appendix.
It is actually tight, implying that under the smoothness framework we cannot
show a better bound. It is a small variation of Lemma 1 in [10].

Lemma 2 Let ϕ = 1+
√
5

2 be the golden ratio. For every two integers x, y ∈ N,
2xy − ϕx+ ϕ2y ≤ 1

ϕ2x
2 + ϕ2y2.

Fix λ = ϕ2 and µ = 1/ϕ2. Then (9) is nonnegative by Lemma 2. Summing
over all colors c ∈ [m] proves (8). Given our choices of λ = ϕ2 and µ = 1/ϕ2

we obtain a bound on the coarse price of anarchy of ϕ3 ≈ 4.236. ⊓⊔
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The following example shows that our bound for singleton congestion
games is best possible if one sticks to the smoothness framework.

Example 2 Consider a singleton congestion game with n facilities and n play-
ers. Set αij = 1 for every i, j ∈ N with j = (i+1)mod n and αij = 0 otherwise.
Suppose that player i chooses strategy i in s and strategy (i + 1)mod n in s∗.
For each color class we then have xc = yc = 1 and z = 0 and the bound of
Lemma 2 is tight.

5 Minsum Machine Scheduling

In a scheduling game, we deal with a set of machines [m], and a set of jobs [n]
that are to be scheduled on the machines. For each job i ∈ [n] and machine
k ∈ [m], we are given a processing time pi,k ∈ R≥0, which is the time it takes
to run job i on machine k.

There are many ways in which a machine may execute the set of jobs it
gets assigned. We restrict ourselves here to a popular policy where the jobs on
a machine are executed one-by-one, in order of increasing processing time (i.e.,
the longer jobs are executed later). Ties are broken in a deterministic way, and
we write i ≺k j if pi,k < pj,k or pi,k = pj,k and the tie breaking rule schedules
job i before job j on machine k. A schedule is a vector s = (s1, . . . , sn), where
for i ∈ [n], si is the machine on which job i is to be ran. We define the value
N(i, k, s) to be the number of jobs j on machine k under strategy profile s for
which it holds that i ≺k j. Given s, the completion time of a job i under s is

pi,si +
∑

j:j≺si
i,sj=si

pj,sj .

The jobs take the role of the players: the strategy set of a player is [m], so the
strategy profiles that arise are schedules. The cost cj(s) of a job j ∈ [n] under
strategy profile s is the completion time of j under s.

We define the social cost function for this game to be the sum of the
completion times of the jobs. Note that the social cost can be written as

C(s) =

m
∑

k=1

∑

i:si=k

(N(i, k, s) + 1)pi,k.

If the processing times are not restricted in any way, we speak of unrelated
machine scheduling games. We speak of related machine scheduling games if
the processing times are defined as follows: For each machine k ∈ [m], there is
a speed tk ∈ R>0 and for each job j ∈ [n] there is a length pj ∈ R≥0 such that
pi,k = pj/tk for all i ∈ [n], k ∈ [m].

Cole et al. [11] show that unrelated machine scheduling games (without
altruism) are (2, 1/2)-smooth, resulting in a coarse price of anarchy of at most
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4.2 Hoeksma and Uetz [19] prove that related machine scheduling games (with-
out altruism) are (2, 0)-smooth, leading to the conclusion that the coarse price
of anarchy is at most 2.

Next, we prove constant upper bounds on the price of anarchy for restricted
altruistic social contexts.

Theorem 4 Every α-altruistic extension of a machine scheduling game with
restricted altruistic social context α is (2+x, 1/x)-smooth for related machines
and (2 + x, 1/2 + 1/x)-smooth for unrelated machines for every x ∈ R>0.
Therefore, the coarse price of anarchy is at most 4 + 2

√
3 ≈ 7.4641 (choosing

x = 1+
√
3) and 12+8

√
2 ≈ 23.3137 (choosing x = 2+2

√
2) for these games,

respectively.

Proof Recall that we assume that α is a restricted social context such that
αii = 1 for all i ∈ [n] and αij ∈ [0, 1] for all i, j ∈ [n].

In [19] it is proved that the base game for the case of related machines is
(2, 0)-smooth, and from the proof of Theorem 3.2 in [11], it follows that the
base game for the case of unrelated machines is (2, 1/2)-smooth. Thus, let s∗

be an arbitrary optimal schedule and let s be an arbitrary schedule. It suffices
to show that

n
∑

i=1

∑

j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s)) ≤ xC(s∗) +

C(s)

x

for all x > 0.
Let

P1 = {(i, j) : s∗i = sj , s
∗
i 6= si, i ≺s∗

i
j}, and

P2 = {(i, j) : si = sj , s
∗
i 6= sj , i ≺si j}.

Informally, P1 (P2) is the set of pairs of jobs (i, j) such that i’s strategy change
from si to s∗i makes j become scheduled later (earlier). Note that for a pair
of players (i, j) that is not in P1 ∪ P2, we have cj(s

∗
i , s−i)− cj(s) = 0, and for

(i, j) ∈ P2 it holds that αij(cj(s
∗
i , s−i)− cj(s)) ≤ 0.

Therefore:

n
∑

i=1

∑

j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s)) =

∑

(i,j)∈P1∪P2

αij(cj(s
∗
i , s−i)− cj(s))

≤
∑

(i,j)∈P1

αij(cj(s
∗
i , s−i)− cj(s)) ≤

∑

(i,j)∈P1

(cj(s
∗
i , s−i)− cj(s))

=
∑

(i,j)∈P1

pi,s∗
i
.

2 More precisely, this is shown to hold for the more general case when the social cost is
an arbitrary nonnegative linear combination of the player’s cost. From a scheduling game
instance described in [12], it follows that this bound is tight, i.e., that the coarse price of
anarchy is actually exactly 4.
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We now rewrite this last expression into a summation over the machines.
We obtain:
n
∑

i=1

∑

j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

≤
m
∑

k=1

∑

(i,j)∈P1 :s∗i =k

pi,k

=

m
∑

k=1

∑

i∈[n]:s∗
i
=k

∑

j∈[n]:(i,j)∈P1

pi,k

=

m
∑

k=1

∑

i∈[n]:s∗i =k,
si 6=k

∑

j:sj=k,i≺kj

pi,k

≤
m
∑

k=1

∑

i∈[n]:s∗i =k,
si 6=k

N(i, k, s)pi,k

=

m
∑

k=1

∑

i∈[n]:s∗i =k,
si 6=k

(xN(i, k, s∗) + x− 1 +N(i, k, s)− xN(i, k, s∗)− x+ 1)pi,k

≤
m
∑

k=1

∑

i∈[n]:s∗
i
=k

(x(N(i, k, s∗) + 1)− 1)pi,k

+

m
∑

k=1

∑

i∈[n]:s∗i =k,
si 6=k

(N(i, k, s)− xN(i, k, s∗)− x+ 1)pi,k

≤
m
∑

k=1

∑

i∈[n]:s∗
i
=k

(x(N(i, k, s∗) + 1)− 1)pi,k

+

m
∑

k=1

∑

i∈[n]:s∗i =k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1

⌈N(i, k, s)− xN(i, k, s∗)− x+ 1⌉pi,k.

Consider a job i and machine k such that it holds that s∗i = k, si 6= k,
and N(i, k, s) > xN(i, k, s∗) + x − 1. Let S(i, k) be the set of ⌈N(i, k, s) −
xN(i, k, s∗) − x⌉ smallest jobs j ≻k i such that sj = k. Note that S(i, k) is
well defined in the sense that this number of jobs exists because N(i, k, s) >
xN(i, k, s∗) + x − 1 implies ⌈N(i, k, s) − xN(i, k, s∗) − x⌉ ≥ 0, and because
there existN(i, k, s) ≥ |S(i, k)| jobs j ≻k i with sj = k. The the last expression
equals

m
∑

k=1

∑

i∈[n]:s∗
i
=k

(x(N(i, k, s∗) + 1)− 1)pi,k

13



+

m
∑

k=1

∑

i∈[n]:s∗i =k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1



pi,k +
∑

j∈S(i,k)

pi,k



 ,

which is less than or equal to

xC(s∗) +
m
∑

k=1

∑

i∈[n]:s∗i =k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1

∑

j∈S(i,k)

pi,k,

thus, obtaining,

n
∑

i=1

∑

j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

≤ xC(s∗) +
m
∑

k=1

∑

j∈S(i,k)

∑

i∈[n]:s∗i =k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1

pi,k. (10)

Note that for every job j ∈ S(i, k) it holds that N(j, k, s) ≥ N(i, k, s) −
|S(i, k)| > xN(i, k, s∗) + x − 1. Therefore, the expression on the right-hand
side of (10) is equivalent to

xC(s∗) +
m
∑

k=1

∑

j∈S(i,k)

∑

i∈[n]:s∗i =k,
si 6=k,

N(i,k,s)>xN(i,k,s∗)+x−1
N(j,k,s)>xN(i,k,s∗)+x−1

pi,k. (11)

Note that j ∈ S(i, k) implies that sj = k. We relax some of the constraints in
the summations and so we upper bound the expression in (11) by

xC(s∗) +
m
∑

k=1

∑

j∈[n]:sj=k

∑

i∈[n]:s∗i=k,
si 6=k,
i≺kj,

N(j,k,s)>xN(i,k,s∗)+x−1

pi,k

≤ xC(s∗) +
m
∑

k=1

∑

j∈[n]:sj=k

∑

i∈[n]:s∗i =k,
si 6=k,
i≺kj,

N(j,k,s)>xN(i,k,s∗)+x−1

pj,k. (12)

The next step in the derivation is made by observing that for each job j
and each machine k such that sj = k, there are at most ⌈(N(j, k, s)−x+1)/x⌉
jobs i ≺k j such that s∗i = k, si 6= k and N(j, k, s) > xN(i, k, s∗)+x−1. To see
this, assume for contradiction that there are more than ⌈(N(j, k, s)−x+1)/x⌉
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jobs i ≺k j such that s∗i = k, si 6= k and N(j, k, s) > xN(i, k, s∗) + x − 1.
Let i be the (⌈(N(j, k, s)− x+ 1)/x⌉+ 1)-th largest job for which these three
properties hold. Then, there are at least ⌈(N(j, k, s)−x+1)/x⌉ jobs scheduled
on machine k that have these properties and that are scheduled after i on
machine k under strategy s∗. Therefore, we have that xN(i, k, s∗) + x − 1 ≥
x⌈(N(j, k, s)− x+ 1)/x⌉+ x− 1 ≥ N(j, k, s), which is a contradiction.

Using this observation together with (10), (11) and (12), we obtain

n
∑

i=1

∑

j∈[n]:j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

≤ xC(s∗) +
m
∑

k=1

∑

j∈[n]:sj=k

⌈

N(j, k, s)− x+ 1

x

⌉

pj,k

≤ xC(s∗) +
m
∑

k=1

∑

j∈[n]:sj=k

1

x
(N(j, k, s) + 1)pj,k

= xC(s∗) +
C(s)

x
,

where for the second inequality we use the basic fact that ⌈a⌉ ≤ a+ 1 for all
a ∈ R. ⊓⊔

Similarly to congestion games, the assumption of the altruistic social con-
text being restricted is necessary. Next we provide an example showing that
the price of anarchy is unbounded if the altruistic social context is unrestricted.

Example 3 Fix a number M ∈ R>0 arbitrarily, and consider the scheduling
game with two machines and two jobs. The speeds are given by t1 = M, t2 = 1.
The job lengths are given by p1 = p2 = 1. Suppose that the altruism levels
are as follows: α11 = α22 = α21 = 0, α12 = 1. Then the schedule where job 1
is on machine 1 and job 2 is on machine 2 is a pure equilibrium. The social
cost of this equilibrium is M + 1. When M ≥ 2, it is a social optimum to
schedule both jobs on machine 2, and this schedule achieves a social cost of 3.
Therefore, for M ≥ 2, the price of anarchy of this altruistic scheduling game
is M + 1/3. Because M can be picked arbitrarily large, this shows that the
price of anarchy is arbitrarily bad for altruistic extensions of scheduling games,
when we allow arbitrary altruism levels.

6 Profit-Maximization Games and Generalized Second-Price

Auctions

In this section we study generalized second-price auctions. This is a profit-
maximization game. We will, therefore, first extend our notions to profit-
maximization games. Then we will apply the extended framework to second-
price auctions.
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6.1 Profit-Maximization Games

The smoothness definition introduced in Section 2 can naturally be adapted
to profit maximization games.

Let Γ = (N, {Σi}i∈N , {pi}i∈N) be a strategic game, where each player
i seeks to maximize his direct profit function pi : Σ → R. The α-altruistic
extension Γα of Γ is defined similarly as for cost minimization games.

Definition 2 Let Γα be an α-altruistic extension of a profit maximization
game with α ∈ Rn×n and social welfare function Π . Further, let s∗ be a
strategy profile that maximizesΠ . Γα is (λ, µ)-smooth if there exists a strategy
profile s̄ ∈ Σ such that for every strategy profile s ∈ Σ it holds that

n
∑

i=1

n
∑

j=1

αij(pj(s̄i, s−i)− pj(s)) ≥ λΠ(s∗)− (µ+ 1)Π(s). (13)

The proof of the following theorem proceeds along the same lines as the
one of Theorem 1 and is omitted.

Theorem 5 Let Γα be an α-altruistic extension of a profit maximization
game with α ∈ Rn×n and social welfare function π. If Γα is (λ, µ)-smooth
with µ > −1, then the coarse price of anarchy of Γα is at most (1 + µ)/λ.

We are now ready to study generalized second-price auctions.

6.2 Generalized Second-Price Auctions

We study auctions where a set N = [n] of n bidders compete for k slots. Each
bidder i ∈ N has a valuation vi ∈ R≥0 and specifies a bid bi ∈ R≥0. Each
slot j ∈ [k] has a click-through rate γj ∈ R≥0. Without loss of generality, we
assume that the slots are sorted according to their click-through rates such
that γ1 ≥ · · · ≥ γk and that k = n.3

We consider the generalized second price auction (GSP) as the underlying
mechanism. Given a bidding profile b = (b1, . . . , bn), GSP orders the bidders
by nonincreasing bids and assigns them in this order to the slots. Each bidder
pays the next highest bid for his slot. More precisely, let b1 ≥ · · · ≥ bn be the
ordered list of bids. We assume without loss of generality that if bi = bj for
two bidders i > j then i precedes j in the order. Then bidder i is assigned to
slot i and has to pay bi+1, where we define bn+1 = 0. The utility of player i
for bidding profile b is defined as ui(b) = γi(vi − bi+1). The social welfare for
a bidding profile b is defined as Π(b) =

∑n
i=1 γivi.

A standard assumption in this setting is that bidders do not overbid their
valuations, that is, the strategy set of bidder i is [0, vi] for all i ∈ [n]. This
assumption is made for reasons related to individual rationality: overbidding is

3 If k < n we can add n − k dummy slots with click-through rate 0; if k > n we can
remove the k − n last slots.
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a dominated strategy. The same reasoning still applies if players are altruistic.
Therefore, we will assume that bidders do not overbid.

We now prove an upper bound of O(n) on the coarse price of anarchy of α-
altruistic extensions of generalized second price auctions if the altruistic social
context is restricted.

Theorem 6 Every α-altruistic extension of a generalized second price auction
with restricted altruistic social context α is (12 , n)-smooth. Therefore, the coarse
price of anarchy is at most 2n+ 1 for these games.

Proof Let b∗ and b be two bidding profiles. By renaming, we assume that for
all j, bidder j gets assigned to slot j under bidding profile b.

The base game is known to be (λ1, µ1) = (12 , 1)-smooth [24]. That is, for
every two bidding profiles b, b∗, it holds that

∑

i∈N ui(b
∗
i , b−i) ≥ 1

2Π(b∗)−Π(b).
It remains to bound

n
∑

i=1

∑

j 6=i

αij(uj(b
∗
i , b−i)− uj(b)) ≥

n
∑

i=1

∑

j 6=i

αij(−uj(b)) ≥
n
∑

i=1

∑

j 6=i

αij(−γjvj)

≥
n
∑

i=1

∑

j 6=i

−γjvj ≥ −(n− 1)Π(b).

Combining these inequalities proves (λ, µ) = (12 , n)-smoothness and applying
Theorem 5 gives the result. ⊓⊔

As in the case of congestion games, the analysis is essentially tight, as we
show with the next example.

Example 4 Let n be even and define k = n/2. We define an instance of n+ 1
bidders as follows. Let

γ1 = · · · = γk = 1, γk+1 = · · · = γn = ε and γn+1 = ε2.

Subsequently, we will make sure that ε, 0 < ε < 1, is chosen sufficiently small.
Further, define the bidder valuations as

v1 = · · · = vk−1 = ε, vk = · · · = vn = 1 and vn+1 = 0.

We assume that no bidder overbids his valuation. In particular, this implies
that bidder n+ 1 bids zero always.

Let b∗ = (b∗1, . . . , b
∗
n+1) be an optimal bidding profile maximizing social

welfare. Note that b∗i > b∗n+1 = 0 for every i ∈ {1, . . . , n} because otherwise
bidder n + 1 would be assigned to a slot with click-through rate at least ε,
which is a contradiction to the optimality of b∗. The total social welfare of b∗

is Π(b∗) = k + ε+ (k − 1)ε2.
Fix a bidding profile b = (b1, . . . , bn+1) such that b1 > · · · > bn+1 = 0

and b1 < b∗i for every i ∈ {1, . . . , n}. Note that this is always possible because
b∗i > 0 for every i ∈ {1, . . . , n}. Also note that this also implies that bi < ε
for all i because we assume that bidders do not overbid. Thus, by choosing ε
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sufficiently small, we ensure that the bids in b become arbitrarily small but
induce the order as indicated above. We have

Π(b) =

n+1
∑

i=1

γivi = (n− 1)ε+ 1.

If bidder i ∈ {1, . . . , n} changes his bid from bi to b∗i , then he is assigned
to slot 1 in (b∗i , b−i), thereby shifting the players 1, . . . , i − 1 one slot down
(relative to the slots they are assigned to under b). Observe that bidder k is
assigned to the last slot with click-through rate 1. As a consequence, whenever
one of the bidders i ∈ {k + 1, . . . , n} deviates to (b∗i , b−i), bidder k is shifted
from his slot k with click-through rate 1 down to slot k+1 with click-through
rate ε. We will exploit this below.

Consider the left-hand side of the smoothness definition

n+1
∑

i=1

n+1
∑

j=1

αij(uj(b
∗
i , b−i)− uj(b)).

Fix player i and consider the contribution ∆j(i) = αij(uj(b
∗
i , b−i)− uj(b)) of

player j to the sum. Clearly, ∆j(n+1) = 0 for every j because bidder n+1 is
assigned to slot n + 1 under both profiles. Let i ∈ {1, . . . , n}. We distinguish
four cases depending on the position of j with respect to i:

Case j > i: The deviation of i does not affect player j and thus ∆j(i) = 0.
Case j = i: Player i moves up to the first slot for which he pays b1. Thus

∆i(i) = αii(γ1(vi − b1)− γi(vi − bi+1)).

Case j = i−1: Player j moves down one slot for which he pays bj+2 (instead
of bj+1 under b). Thus

∆j(i) = αij(γj+1(vj − bj+2)− γj(vj − bj+1)).

Case j < i − 1: Player j moves down one slot for which he pays bj+1 (as
under b). Thus

∆j(i) = αij(γj+1(vj − bj+1)− γj(vj − bj+1) = αij(γj+1 − γj)(vj − bj+1).

Choosing ε sufficiently small we can make sure that the total contribution
of the payments bℓ in each ∆j(i) in each of the above four cases is negligible.

We consider the restricted social context, so without loss of generality we
assume that all αii are normalized to 1. Recall that γ1 = 1. Ignoring the effect
of the payments (which we just argued is negligible if we make ε small enough),
the total contribution to the left-hand side of the smoothness definition is thus

n
∑

i=1



αii(γ1vi − γivi) +

i−1
∑

j=1

αij(γj+1 − γj)vj





=

n
∑

i=1

(1 − γi)vi +

n
∑

i=1

i−1
∑

j=1

αij(γj+1 − γj)vj
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Note that γj+1 − γj = 0 for all j 6= k and γk+1 − γk = ε − 1. The above
expression thus simplifies to

n
∑

i=k+1

(1− ε)vi +

n
∑

i=k+1

αik(γk+1 − γk)vk = k(1 − ε)− (1− ε)

n
∑

i=k+1

αik

= (1 − ε)

(

k −
n
∑

i=k+1

αik

)

.

By setting αik = 1 for every i, the above contribution is equal to zero.
To show (λ, µ)-smoothness, we need to lower bound the latter expression

by λΠ(b∗)− (µ+ 1)Π(b). That is, λ and µ need to satisfy

(1− ε)

(

k −
n
∑

i=k+1

αik

)

= 0 ≥ λ(k + ε+ (k − 1)ε2)− (µ+ 1)((n− 1)ε+ 1).

which implies (letting ε → 0) that µ + 1 ≥ λk. This provides an asymptotic
lower bound of

1 + µ

λ
≥ k

1
=

n

2

on the possible price of anarchy achievable by our smoothness framework.

7 Conclusions

We studied the coarse price of anarchy of altruistic extensions of three fun-
damental classes of games. The main focus of this paper was put on deriving
upper bounds that are independent of the underlying social network struc-
ture. An interesting open question is whether one can derive refined bounds
by exploiting structural properties of the underlying social network.

In the present studies, we concentrated on altruistic games with nonnega-
tive altruistic social contexts α, even though our model of altruistic games and
the smoothness definition introduced in Sections 2 and 3 allow us to incorpo-
rate spiteful behavior as well. We leave it as an interesting open direction for
future research to pursue such analyses for spiteful behavior.
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A Technical Lemmas and Calculations

Here we accumulate all technical details that were omitted from the discussion above.

Proof of Lemma 1 We write x as (y + z), where z ∈ Z. Substituting this into (5)
results in

((y + z) + 1)y + (y + z)y ≤
7

3
y2 +

2

3
(y + z)2, (14)

which can be rewritten as
2

3
yz + y − y2 ≤

2

3
z2. (15)

When z ≤ 0, (15) is easily seen to hold, because the first term of the left hand side is
nonpositive, the second and third terms together are nonpositive (taking into account that
y is nonnegative), and the right hand side is nonnegative.

When z > 0 and y ≤ z, (15) holds because

2

3
yz + y − y2 ≤

2

3
yz ≤

2

3
z2.

Lastly, when z > 0 and y > z, (15) holds because

2

3
yz + y − y2 <

2

3
y2 + y − y2 = y −

1

3
y2.

When y ≥ 3, the latter expression is nonpositive and thus not exceeds 2

3
z2. For the values

of (y, z) not yet covered in this case analysis (i.e., (y, z) ∈ {(1, 1), (2, 1)}, it can be checked
by hand that (15) holds. ⊓⊔

Deriving Inequality (8). Note that to satisfy the smoothness condition (2) it suffices
to show that

n
∑

i=1



ci(s
∗
i , s−i) +

∑

j 6=i

αij(cj(s
∗
i , s−i)− cj(s))



 ≤ λC(s∗) + µC(s).

Let s and s∗ be two strategy profiles and let xe and x∗
e refer to xe(s) and xe(s∗),

respectively. Fix some player i ∈ N and let x′
e = xe(s∗i , s−i). Note that

x′
e =











xe + 1 if e ∈ s∗i \ si

xe − 1 if e ∈ si \ s∗i
xe otherwise.

Using these relations, we obtain

ci(s
∗
i , s−i) +

∑

j 6=i

αij(cj(s
∗
i , s−i)− cj(s))

=
∑

e∈s∗
i

x′
e +

∑

j 6=i

αij

∑

e∈sj

(x′
e − xe)

=
∑

e∈s∗
i
\si

(xe + 1) +
∑

e∈s∗
i
∩si

xe +
∑

j 6=i

αij





∑

e∈s∗
i
∩sj

1−
∑

e∈si∩sj

1





=
∑

e∈s∗
i
\si



1 +
∑

j 6=i:e∈sj

1



+
∑

e∈s∗
i
∩si



1 +
∑

j 6=i:e∈sj

1



+
∑

j 6=i

αij





∑

e∈s∗
i
∩sj

1−
∑

e∈si∩sj

1





=
∑

e∈s∗
i



1 +
∑

j 6=i:e∈sj

1



+
∑

j 6=i

αij





∑

e∈s∗
i
∩sj

1−
∑

e∈si∩sj

1
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=
∑

e∈s∗
i

1 +
∑

j 6=i





∑

e∈s∗
i
∩sj

(1 + αij)−
∑

e∈si∩sj

αij





= |s∗i |+
∑

j 6=i

((1 + αij) |s
∗
i ∩ sj | − αij |si ∩ sj |) .

Note that

C(s) =
n
∑

i=1

∑

e∈si

∑

j:e∈sj

1 =
n
∑

i=1





∑

e∈si

1 +
∑

j 6=i

∑

e∈si∩sj

1



 =
n
∑

i=1

∑

j 6=i

|si ∩ sj |+
n
∑

i=1

|si| .

C(s∗) can be expressed similarly.
That is, our smoothness definition is equivalent to

n
∑

i=1

∑

j 6=i

((1 + αij) |s
∗
i ∩ sj | − αij |si ∩ sj |) +

n
∑

i=1

|s∗i |

≤ λ





n
∑

i=1

∑

j 6=i

∣

∣s∗i ∩ s∗j
∣

∣ +
n
∑

i=1

|s∗i |



+ µ





n
∑

i=1

∑

j 6=i

|si ∩ sj |+
n
∑

i=1

|si|



 .

Rearranging terms yields

n
∑

i=1

∑

j 6=i

(

λ
∣

∣s∗i ∩ s∗j
∣

∣+ (µ + αij) |si ∩ sj | − (1 + αij) |s
∗
i ∩ sj |

)

+ (λ− 1)
n
∑

i=1

|s∗i |+ µ

n
∑

i=1

|si| ≥ 0.

For singleton congestion games, this is equivalent to (8).

Proof of Lemma 2. It is easy to check that the claim holds if x = 0 or y = 0. Let
x ≥ 1 and y ≥ 1. Recall that 1 + ϕ = ϕ2. We have

ϕ2y2 − 2xy +
1

ϕ2
x2 + ϕx− ϕ2y =

(

ϕy −
1

ϕ
x

)2

+ ϕx− (1 + ϕ)y

≥ 2ϕy −
2

ϕ
x− 1 + ϕx− (1 + ϕ)y = (ϕ− 1)y +

(

ϕ−
2

ϕ

)

x− 1

=
1

ϕ
y +

(

1−
1

ϕ

)

x− 1 ≥ 0,

where the first inequality follows because z2 ≥ 2z− 1 for every z ∈ R and the last one holds
because x ≥ 1 and y ≥ 1. ⊓⊔
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